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Abstract

A fast implicit Newton–Krylov finite volume algorithm has been developed for high-order unstructured steady-state
computation of inviscid compressible flows. The matrix-free generalized minimal residual (GMRES) algorithm is used
for solving the linear system arising from implicit discretization of the governing equations, avoiding expensive and com-
plex explicit computation of the high-order Jacobian matrix. The solution process has been divided into two phases: start-
up and Newton iterations. In the start-up phase an approximate solution with the general characteristics of the steady-state
flow is computed by using a defect correction procedure. At the end of the start-up phase, the linearization of the flow field
is accurate enough for steady-state solution, and a quasi-Newton method is used, with an infinite time step and very rapid
convergence. A proper limiter implementation for efficient convergence of the high-order discretization is discussed and a
new formula for limiting the high-order terms of the reconstruction polynomial is introduced. The accuracy, fast conver-
gence and robustness of the proposed high-order unstructured Newton–Krylov solver for different speed regimes is dem-
onstrated for the second, third and fourth-order discretization. The possibility of reducing computational cost required for
a given level of accuracy by using high-order discretization is examined.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In computational aerodynamics, as in scientific computing generally, we wish to obtain an accurate solution
as quickly as possible. When accuracy requirements are strict, high-order methods are preferable to second-
order methods in the sense of providing a better solution on a given mesh, and therefore a comparable quality
solution on a coarser mesh, when compared with second-order schemes. However, because of the higher com-
putational cost per control volume and the possibility of degradation in convergence rates for high-order
methods, the question of whether one can obtain an accurate solution more quickly with a high-order method
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hinges on the ability to achieve rapid convergence with such schemes. In this paper, we will present evidence
that a high-order finite-volume scheme can in fact reach a given level of accuracy with less computational
effort than a second-order scheme. Specifically, we will present a high-order accurate unstructured mesh
finite-volume solver for compressible, inviscid flow as well as the techniques we use to ensure rapid conver-
gence of an implicit Newton-GMRES scheme for both third- and fourth-order discretizations.

1.1. High-order discretization methods

High-order finite-volume methods – by which we mean anything beyond second-order accurate – were first
applied to aerodynamic flows by Rogers et al. [30], with a third-order discretization implemented in INS3D,
and by Godfrey et al. [14], who applied ENO schemes in computational aerodynamics. More recently, De
Rango and Zingg [8] dramatically reduced numerical error in drag using relatively coarse structured grids
for steady turbulent flow over a 2D airfoil by applying a globally third-order accurate algorithm. Their results
provide a convincing demonstration of the accuracy benefits of high-order methods compared with a second-
order method for practical flows. Zingg et al. [36] compared different high-order accurate flux discretization
techniques for laminar and turbulent flows (including transition) in both subsonic and transonic speed
regimes, showing that high-order discretization produces comparably accurate solutions much more efficiently
than a second-order method.

Our research in high-order unstructured solvers is motivated by the desire to combine the accuracy and effi-
ciency benefits seen in the application of high-order methods on structured meshes with the geometric and
adaptive flexibility of unstructured meshes. Also, to provide a natural upgrade path for the substantial base
of existing unstructured finite-volume flow solvers, we focus on high-order finite-volume schemes rather than
high-order discontinuous Galerkin methods.

The roots of high-order unstructured mesh finite-volume methods lie in the work of Barth and various
co-workers, who published a series of papers describing techniques for using least-squares reconstruction to
obtain high-order accuracy [5,3,4,6]. While the techniques described in these papers are applicable in principle
to all orders of accuracy, the results presented in them do not extend beyond third-order accuracy (quadratic
reconstruction). Ollivier-Gooch [24,25] experimented with solution-dependent weightings as a way to compute
oscillation-free least-squares reconstructions for schemes of up to fourth-order accuracy. Delanaye and Essers
[10] and Geuzaine et al. [13] proposed a quadratic reconstruction finite volume scheme, including a new
approach to monotonicity enforcement. They computed the inviscid flux directly from their quadratic recon-
struction; however, viscous terms were obtained through a linear interpolation and were therefore only second
order. For monotonicity enforcement, they used a discontinuity detector to eliminate the high-order terms
from the reconstruction in the vicinity of discontinuities.

1.2. Implicit methods for steady-state convergence

Achieving steady-state convergence by time marching, or pseudo-time marching, requires that all transient
phenomena in the domain be damped or convected out of the domain. Implicit methods use large time steps to
both smear and rapidly propagate errors; convergence rates are typically dictated by non-linear stability issues
or by inexact linearization of a non-linear residual. In the limit of very large time steps, implicit time advance
schemes reduce to Newton’s method [34,32,2,6, are among the early uses in CFD]. In principle, Newton’s
method gives quadratic convergence rates for steady flow solution when starting from a good enough initial
guess. In practice, however, forming and solving the linear system at each Newton iteration accurately enough
to achieve quadratic convergence is difficult enough that most researchers choose a quasi-Newton method.
Quasi-Newton methods sacrifice quadratic convergence in favor of lower memory usage and lower cost per
iteration, with the net result of reducing overall CPU time [27]. Quasi-Newton methods are generally catego-
rized as approximate Newton (in which an approximate linearization is used) and inexact Newton (in which the
linear system is not solved exactly).

Regardless of the details of the space and time discretization techniques, implicit methods inevitably require
the solution of a large linear system resulting from the linearization of the fluid flow equations in time. While
approximate factorization techniques are very effective linear solvers for structured meshes, modern unstruc-
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tured mesh implicit schemes in CFD generally rely on iterative linear solvers, especially the generalized min-
imal residual (GMRES) method [31], which was developed particularly for non-symmetric systems such as
those arising from implicit time discretization on unstructured meshes. In the matrix-free variant of GMRES,
the matrix-vector products required by the GMRES algorithm are computed by using directional derivatives,
eliminating the problem of explicitly forming the Jacobian matrix, and thereby considerably reducing both
memory usage and programming effort. This is especially helpful for high-order unstructured mesh solvers
where the full (analytic) Jacobian calculation is costly and difficult.

The efficiency of GMRES in solving a linear system depends strongly on the conditioning of the linear sys-
tem, and compressible flow problems on unstructured meshes do not typically have well-conditioned Jacobian
matrices. This is especially true for high-order methods, as we shall see in Section 5. Effective preconditioning
is therefore essential to rapid convergence of Newton-GMRES schemes.

To retain the low memory usage of a matrix-free GMRES method, we could use a matrix-free precondi-
tioner, such as the lower–upper symmetric Gauss–Seidel (LU-SGS) preconditioner introduced by Luo et al.
for 3D compressible flows [16]. They completely eliminated the storage of the preconditioning Jacobian matrix
by approximating the Jacobian with numerical fluxes. However, they did not perform full Newton iterations,
probably because of the stability considerations for their LU-SGS preconditioner, and their convergence rates
remained nearly linear. We have experimented with LU-SGS preconditioning for a high-order matrix-free
Newton-GMRES algorithm for compressible flow [20]. For supersonic flows, LU-SGS-GMRES was about
as efficient for the third-order discretization as for the second-order one. However, for flows that are more
difficult to converge, for fourth-order discretization, and for full Newton iterations (infinite time step), the
LU-SGS preconditioner proved to be inadequate for our needs.

Currently, the most prevalent preconditioning approach for compressible flows is to use a low-order Jaco-
bian as the preconditioner matrix and incomplete lower–upper (ILU) factorization to apply the precondition-
er. For structured meshes, Pueyo and Zingg [28] presented an efficient matrix-free Newton–GMRES solver for
steady-state aerodynamic flow computations using this approach. After a thorough parametric study for invis-
cid, laminar and turbulent 2D flows, they concluded that the approximate Newton method using matrix-free
GMRES preconditioned with a first-order Jacobian and ILU(2) provides the best efficiency in terms of CPU
time for most cases. Subsequently, Nichols and Zingg [23] developed a 3D multi-block Newton–Krylov solver
for the Euler equations using the same approach, concluding that for this case, ILU(1) gives an appropriate
balance between good preconditioning and low computational time per iteration.

For unstructured meshes, Venkatakrishnan and Mavriplis [35] developed an approximate Newton-
GMRES implicit solver for computing compressible inviscid and turbulent flows around a multi-element
airfoil. They compared different preconditioning strategies and found out that GMRES with ILU(0) precon-
ditioning and a first-order Jacobian had the best performance. Manzano et al. [17] presented an efficient ILU
preconditioned matrix-free Newton-GMRES algorithm for 3D unstructured meshes. They used different lev-
els of fill (ILU(1–3)) depending on the case and the flux residual to achieve optimum performance. Delanaye
et al. [12] presented the first-ever third-order accurate ILU preconditioned matrix-free Newton–GMRES sol-
ver for the Euler and Navier–Stokes equations. They showed that convergence can stall for stiff problems
when using a high-order Jacobian and ILU(0) decomposition. Full convergence was achieved by allowing
additional fill (ILU(1)) in the decomposition.

1.3. Scope of the present article

In this paper, we will present our recent work on third- and fourth-order accurate schemes for the Euler
equations. In addition to verifying full-order accuracy in our solutions, we have also attained excellent effi-
ciency in convergence to steady state, with the third- and fourth-order schemes comparable in efficiency to
the second-order scheme. Our discretization scheme uses Barth and Frederickson’s [5] reconstruction algo-
rithm as a foundation for a fourth-order accurate solution of the compressible Euler equations. The details
of our spatial discretization scheme are given in Section 3, including high-order boundary condition enforce-
ment and a better-converging variant of Delanaye and Essers’ [10] monotonicity enforcement scheme. Section
4 gives a comprehensive description of our time advance scheme, including formation of the preconditioning
matrix and our strategies for both start-up and Newton iterations; the complex issue of preconditioning, which
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is only summarized in this section, is discussed fully in a companion paper [22]. The accuracy, efficiency and
robustness of the current algorithm are demonstrated in Section 5 through several test cases.

2. Finite-volume discretization of the governing equations

Inviscid compressible flow simulations provide both a relatively accurate representation of aerodynamic
flows and a stepping stone to viscous calculations, which depend critically on a robust, efficient inviscid solver
as their basis. In integral form, we can write the Euler equations that describe inviscid compressible flow as
d

dt

Z
CV

U dV þ
I

CS
F dA ¼ 0; ð1Þ
where the conserved solution vector U and flux vector F can be written as
U ¼

q

qu

qv

E

26664
37775 F ¼

qun

quun þ P n̂x

qvun þ P n̂y

ðE þ P Þun

26664
37775 ð2Þ
with ½q qu qv E�Tare the densities of mass, x-momentum, y-momentum and energy, respectively, and
un ¼ un̂x þ vn̂y . The energy is related to the pressure by the perfect gas equation of state:
E ¼ qcvT þ
1

2
q u2 þ v2
� �

;

P ¼ qRT :
Like many researchers, we choose to work with the equations in non-dimensional form, using the free stream
density q0 and sound speed c0 as reference values. The form of the governing equations remains the same; the
equation of state becomes
E� ¼ q�T �

cðc� 1Þ þ
1

2
q�ðu�2 þ v�

2Þ;

P � ¼ q�T �

c
;

where c is the ratio of specific heats for the gas. Hereafter, we will drop the � superscript from the non-dimen-
sional variables for simplicity. For a finite-volume formulation with fixed control volumes, we can use the
definition
Ui ¼
1

ACV i

Z
CV i

U dA
to re-write Eq. (1) as
dU i

dt
¼ � 1

ACV i

I
CSi

F dA � �RiðUÞ; ð3Þ
where we have introduced the residual RiðUÞ, which is a non-linear function of the average solutions for con-
trol volumes in the neighborhood of i.

3. Spatial discretization

Our solver is a cell-centered finite-volume solver, with spatial discretization accuracy as high as fourth-
order. Computation of the residual, or flux integral, for all interior control volumes to high-order accuracy
for smooth solutions is a three-step process. First, the control volume averages are reconstructed to produce
a piecewise polynomial representation of the solution (see Section 3.1). Next, the reconstructed data is used to
compute the numerical flux at flux integration points on the control volume interfaces (see Section 3.2).
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Finally, flux is integrated numerically around the control volume (see Section 3.2). Boundary condition treat-
ment will be discussed in Section 3.4, while Section 3.5 will describe our approach to enforcing monotonicity
near discontinuities in the solution.

3.1. High-order reconstruction procedure

The goal of high-order reconstruction is to compute, based on a control-volume averaged solution, a piece-
wise polynomial representation of the underlying smooth function that is accurate to order k þ 1. Our recon-
struction procedure [26] follows the approach of Barth and Frederickson [5]. Because we are concerned with
enforcing monotonicity of density and pressure at solution discontinuities, we choose to reconstruct a vector
of control volume averages of the primitive variables V i � ½�qi �ui �vi P i�T instead of the conserved variables U i.
We write the reconstruction as a polynomial:
V ðkÞR ðx; yÞ ¼ V ðxc; ycÞ þ
oV
ox

����
C
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oy

����
C
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����
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2
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oxoy
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where D~x �~x�~xc and~xc is the control volume reference location, taken to be the centroid for cell-centered
control volumes. The derivatives in Eq. (4) are pointwise values at the reference point C; we seek to compute
all derivatives of degree 6 k during reconstruction.

We write the mean constraint as
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where the integrated expression includes control volume moments of the form xnym � 1
A

R
xnym dA. We compute

these moments by applying Gauss’s theorem
Z
CV

xnym dA ¼
Z

CV
r � 1

nþ 1
xnþ1ymx̂

� �
dA ¼

I
oCV

1

nþ 1
xnþ1ymnx ds ð6Þ
and evaluating the last integral exactly around each control volume by using Gauss quadrature with an appro-
priate number of quadrature points; as many as three are required for third moments, where nþ m ¼ 3. While
moments for triangular control volumes could be directly calculated with relative ease, the flux form on the
right of Eq. (6) can be extended to curved boundaries, vertex-centered control volumes, and even to three
dimensions much more easily than the area integral form.

If our reconstruction is accurate, it will closely approximate the underlying smooth solution, and the aver-
age of the reconstruction polynomial in control volume i, V ðkÞR;iðx; yÞ, over a neighboring control volume j, will
nearly match the average in control volume j:
V j ¼
1

Aj

Z
j

V ðkÞR;iðx; yÞdA ð7Þ
For each control volume i, we create a stencil of nearby control volumes and write Eq. (7) for each control
volume in the stencil. To support calculation of all derivative terms, this stencil must have at least
ðk þ 1Þðk þ 2Þ=2 control volumes, including i. We exceed that number by about 50%, using at least 4, 9,
and 16 control volumes for second-, third-, and fourth-order accuracy; the additional data allows the
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Fig. 1. A typical cell center control volume and its reconstruction stencil, including three layers of neighbors: FN, first neighbor; SN,
second neighbor; TN, third neighbor.
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least-squares reconstruction to filter out noise. We build stencils by successively adding layers of face neigh-
bors, as shown in Fig. 1, until the desired stencil size is reached. Near boundaries, more layers of neighbors are
typically required than in the interior, sometimes leading to geometrically large stencils.

Taken together, Eqs. (5) and (7) form a constrained least squares system, from which we typically eliminate
the mean constraint analytically by Gauss elimination. After solving the remaining unconstrained least squares
system by singular value decomposition, we enforce the mean constraint by solving Eq. (5) for the point value
at the reference location, V C.

3.2. Numerical flux computation

We compute the numerical fluxes by using Roe’s flux differencing scheme [29] with Harten’s entropy fix [15]
F ðUL;U RÞ ¼
1

2
½F ðULÞ þ F ðURÞ� �

1

2
jeAjðU R � ULÞ; ð8Þ
where U L and U R are computed by evaluating the reconstruction polynomials V ðkÞR for the left and right con-
trol volumes at the Gauss point. eA is the Jacobian matrix evaluated based on the Roe’s average propertieseU ðU R;ULÞ, and jeAj is written as:
jeAj ¼ eX �1

f ðk1Þ
f ðk2Þ

f ðk3Þ
f ðk4Þ

���������

���������
eX ; ð9Þ
where eX are the right eigenvectors and K are the eigenvalues of the Jacobian matrix, and f ðekiÞ incorporates
the entropy fix:
f ðkÞ ¼
jkj; jkjP d;
k2þd2

2d ; jkj < d:

(

In addition to eliminating expansion shocks, the entropy fix also makes Roe’s flux function differentiable.
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3.3. Flux integration

The accuracy of flux integration should be equal or higher than the accuracy of flow variable reconstruction
to evaluate the residuals with high-order accuracy. This is achieved by standard Gauss quadrature. For the
second-order (linear reconstruction) case, we use one quadrature point per face, whereas for the third-order
(quadratic reconstruction) and fourth-order (cubic reconstruction) cases, we use two equally-weighted quad-
rature points per face.

3.4. High-order boundary condition enforcement

Boundary treatment is critical to achieving genuinely high-order accurate solutions for domains with
curved boundaries. The shape of the domain must be known to at least the desired order of accuracy of
the solution. In particular, the boundary Gauss quadrature information and moments of boundary control
volumes must be computed properly.

Boundary Gauss points must fall on the curved boundary rather than on a piecewise linear approximation
to the boundary, as shown in Fig. 2. Specifically, the boundary Gauss points must be spaced along the bound-
ary according to arc length; in other words, for two Gauss points (third- and fourth-order accuracy), the
Gauss points (1 and 2) must lie at 1

2
� 1

2
ffiffi
3
p of the way from one boundary vertex (A) to the next (B), as measured

along the arc. The Gauss weights for such points must each be half of the arc length of the curve, while the
normals used at boundary Gauss points must be perpendicular to the curved boundary, as shown. Gauss
points that are ‘‘properly” located on the piecewise linear approximation to the boundary (10 and 20) are
Oðh2Þ from the curved boundary, in general, and will cause second-order errors.

When computing moments for control volumes with curved boundaries, again integration points must be
exactly on the curved boundary. Also, care must be taken to ensure that the integration is sufficiently accurate:
the normal direction is no longer constant, and so the integrand in Eq. (6) is an arbitrary smooth function. We
use three Gauss points along each curved boundary edge (such as AB) when computing moments to ensure
that the moments are more accurate than the solution will be.

We employ two strategies to enforce boundary conditions to high-order accuracy. Many boundary condi-
tions express a constraint on the pointwise value of the solution on the boundary. We enforce such boundary
conditions by adding an additional constraint to the least-squares system. For example, for an isothermal wall
condition, we would write (for a Gauss point ~xGj in control volume i and assuming a third-order accurate
reconstruction):
T w ¼ T i þ
oT
ox

����
i

ðxGj � xiÞ þ
oT
oy

����
i

ðyGj
� yiÞ þ

o2T
ox2

����
i

xGj � xi

� �2

2
þ o2T

oxoy

����
i

ðxGj � xiÞðyGj
� yiÞ þ

o2T
oy2

����
i

ðyGj
� yiÞ

2

2
:

In general, the boundary constraints can not be analytically eliminated from the least-squares system a priori

(unlike the mean constraint), so these must be numerically eliminated by using Gauss elimination with pivot-
ing. In certain cases, especially for vertex-centered control volumes, the boundary constraints may not be lin-
early independent, and so not all can be simultaneously satisfied by the reconstruction. Also, some boundary
constraints couple variables in the reconstruction. For example, in inviscid flow, the wall boundary can be
stated as a requirement for zero normal velocity, un � unx þ vny ¼ 0. This boundary condition couples the
reconstruction coefficients for u and v, making the reconstruction more expensive to compute. For boundary
conditions enforced by solution constraints, we use the analytic flux at the boundary; that is, for the Euler
equations we calculate ðqun quun þ Pnx qvun þ Pny unðE þ P ÞÞT using data from the reconstruction evaluated
A

1
2

B2’1’

Fig. 2. A piece of a curved boundary, showing correct (1, 2) and incorrect ð10; 20Þ Gauss quadrature points.
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at the Gauss point. For a full description of how to enforce boundary conditions using constraints on the
reconstruction, see Ollivier-Gooch and Van Altena [26].

An alternative to boundary constraints is boundary condition enforcement by the use of special fluxes. For
example, in the case of the inviscid wall boundary condition, we could compute an unconstrained reconstruc-
tion in boundary control volumes, then compute a flux that explicitly enforced un ¼ 0 : ð0 Pnx Pny 0Þ.
Although we have not used this approach in the present work, we have applied this wall boundary condition
with excellent results (both in solution quality and convergence rate) in other work [19].

In the present work, we also require a far-field boundary condition, for which we apply characteristic
boundary conditions. That is, for subsonic inflow, we use three pieces of data from the far field (total pressure,
total temperature, and flow angle) to compute three of the four characteristic invariants at the boundary, with
the fourth coming from reconstructed data within the domain. Once a boundary state is established from the
invariants, we calculate the analytic Euler flux at the boundary.1 A similar approach is applied for subsonic
outflow; supersonic inflow and outflow are trivial to apply, regardless of order of accuracy.

3.5. Enforcing monotonicity

Least-squares polynomial reconstruction of piecewise constant control volume averaged data produces
overshoots in the reconstruction in the vicinity of sharp gradients and discontinuities, which can in turn pro-
duce stability problems. This occurs because the reconstruction stencil contains control volumes on opposite
sides of the discontinuity – data that are not smoothly connected. In essence, when reconstructing non-smooth
data near a discontinuity, the data are not physically compact even though the mesh stencil is geometrically

compact. We enforce monotonicity by reducing the computed gradients (slope limiting), suppressing over-
shoots resulting from reconstruction over a non-physically compact stencil. Specifically, we require that the
solution value V ið~xGÞ that we compute at a Gauss point~xG must fall between the highest and lowest control
volume averages in the vicinity of control volume i:
1 We
externa
V max ¼ maxðV i; V FNjÞ; ð10Þ
V min ¼ minðV i; V FNjÞ; ð11Þ
V min 6 V ið~xGÞ 6 V max; ð12Þ
where V i is the control volume average and V FNj are the control volume averages of the first neighbors. In
theory, Eq. (12) should be valid for all points inside the control volume i, but in practice we check this con-
dition only for Gauss points where the fluxes are actually computed. The unlimited reconstructed value at the
Gauss point G is found by evaluating the reconstruction of Eq. (4)
V ið~xGÞ ¼ V ðkÞR ð~xGÞ: ð13Þ

In the linear (second-order) case, the gradientrV C computed from the reconstruction procedure is adjusted to
satisfy the monotonicity condition, Eq. (12), by a scalar slope limiter /
V G ¼ V C þ /irV jC r!G: ð14Þ

In general, an ideal limiter is differentiable and acts firmly in the shock region suppressing possible over/

undershoots. A limiter also should not be active in smooth regions despite the existence of non-monotone
solutions. These issues are even more severe for high-order methods. Venkatakrishnan’s limiter [33], though
not fully differentiable, addresses most of these issues. For each Gauss point, Venkatakrishnan’s limiter com-
putes /G from
D1;max ¼ V max � V i;

D1;min ¼ V min � V i;

D2 ¼ signðV G � V iÞðjV G � V ij þ xÞ; ð15Þ
recognize that the simplicity of this boundary condition has implications for how far away our far field boundary must be for
l aerodynamic flows; while we intend to address this issue in the future, it is beyond the scope of the present research.
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e2 ¼ ðKDxÞ3;

/G ¼
1
D2

ðD2
1;maxþe2ÞD2þ2D2

2D1;max

D2
1;maxþ2D2

2þD1;maxD2þe2

� 	
if D2 > 0

1
D2

ðD2
1;minþe2ÞD2þ2D2

2D1;min

D2
1;min
þ2D2

2þD1;minD2þe2

� 	
if D2 < 0

8>>><>>>: ð16Þ
where x is chosen to be 10�12 for 64-bit arithmetic computations to prevent division by zero. Dx in Eq. (15) is
the mesh length scale and can be picked as an average mesh length scale or a local mesh length scale. We use a
local mesh length scale equal to the diameter of the circle inscribed in an equilateral triangle with the same area
as the control volume
Dx ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
Area

3
ffiffiffi
3
p

s
: ð17Þ
Once a limiter value /i has been calculated for a control volume, the obvious analog to limited linear recon-
struction suggests that we write the limited high-order reconstruction as
V ðkÞG ðxG; yGÞ ¼ V i þ /i½fLinear Partg þ fHigh-Order Partg�:
Because / ¼ 1þOðDx2Þ in smooth regions for Venkatakrishnan’s limiter, this application of the limiter
degrades solution accuracy from third- or fourth-order to second-order. We have found that the addition
of a discontinuity detector, similar to that described by Delanaye and his co-workers [10,11], makes the limiter
less diffusive. With this discontinuity detector, we write the limited reconstruction polynomial as:
V ðkÞG ðxG; yGÞ ¼ V i þ ½ð1� rÞ/i þ r�fLinear Partg þ rfHigh-Order Partg; ð18Þ
where r is a limiter for high-order terms. In smooth regions, the full high-order reconstruction is applied by
choosing r ¼ 1. Near discontinuities we switch from the high-order to the limited linear polynomial to prevent
possible oscillatory behavior of second and third derivatives. We compute the limiter value, /, by using the
Venkatakrishnan limiter, Eq. (16), with V G computed using all terms. We then compute rð/Þ, which is
designed to be a differentiable switch for convergence reasons, with r nearly one for / larger than a critical
value /0 and nearly zero for small values of / [21]:
r ¼ 1� tanhðSð/0 � /ÞÞ
2

; ð19Þ
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Fig. 3. Defining the discontinuity detector, r, as a function of the limiter value, /.
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where S determines the sharpness of the step function, adjusting the rapidity of the transition between zero
and one, while /0 defines the limiter value that activates the switch. Fig. 3 shows rð/Þ for several values of
/0 and S. We have found that choosing /0 ¼ 0:8 and S ¼ 20 provides a reasonable switch function whose
good behavior is relatively case independent. The shock resolution and location are not sensitive to these val-
ues, which mainly affect convergence and the oscillations around the shock; the value of S has a greater effect
on the convergence and oscillations around shock, and too small a value for S can also reduce accuracy in
smooth regions. Too small a value for /0 can produce oscillations because the unlimited high-order recon-
struction is sometimes used for cases where limiting is required for monotonicity. Also, too large a value
for /0 can decrease accuracy in smooth regions by invoking limiting unnecessarily.

4. Convergence to steady state

We seek steady-state solutions, which implies that we wish to drive the residual, or flux integral, in Eq. (3)
to zero as quickly as possible. We apply backward Euler time differencing to the semi-discrete form, which
results in a time advance scheme of the form
I
Dti
þ oR

oU

� �
dUi ¼ �RðU n

i Þ;

U nþ1
i ¼ U n

i þ dUi

ð20Þ
where I is an identity matrix, oR
oU

is the Jacobian matrix resulting from residual linearization, and dU i is the
solution update. Dti is a local time step computed based on a global CFL number and a local, per control vol-
ume, characteristic time [3].

Because we are interested only in the steady state solution, we are unconcerned about the first-order time
accuracy of this time discretization, and in fact prefer to use the largest possible time steps. In the limit of infi-
nite time step, Eq. (20) reduces to Newton iteration
oR

oU

� �
dU i ¼ �RðUn

i Þ ð21Þ
As is well-known, however, Newton’s method converges only if the initial guess at the solution is sufficiently
close to the actual solution and the linearization oR

oU
is therefore sufficiently accurate. Therefore, like numerous

other researchers, we divide our solution procedure into two phases: a start-up phase, during which we seek to
efficiently obtain an approximation of the steady-state solution by advancing Eq. (20) in (pseudo-)time; and a
Newton phase, during which we drive the residual rapidly to zero with a few iterations of Eq. (21).

Regardless of which phase we are in, we must solve a large, sparse system of linear equations to compute
the solution update for each iteration. We use right-preconditioned GMRES [31] without restart as an itera-
tive solver throughout; right preconditioning is used because this leaves the residual of the linear system
unchanged. We apply the preconditioner by using ILU; we have found this to be both more robust and about
an order of magnitude more efficient in CPU time compared with our previous approach of using LU-SGS
[20]. The main distinctions between our start-up phase (described in Section 4.2) and our Newton phase
(see Section 4.3) lie in how the Jacobian matrix oR

oU
is approximated within GMRES and in how we compute

and apply a preconditioning matrix. Computation of the preconditioning matrix used in GMRES is a complex
enough subject to deserve separate treatment, which is found in Section 4.1.

4.1. Computing the preconditioning matrix

As will be discussed below in Sections 4.2 and 4.3, we never explicitly compute the high-order Jacobian;
nevertheless, we must still explicitly compute and factor some approximation of the Jacobian for precondi-
tioning, without which the convergence of GMRES for the linear system is quite poor. The optimal precon-
ditioning matrix is not unique, depending both on the problem and on how the preconditioner is applied. A
low-order Jacobian matrix captures the essential physical information about the flow, is narrowly banded after
reordering and is much better conditioned than the high-order Jacobian. As such, constructing and applying
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such a matrix as a preconditioner for the high-order linear system will be relatively cheap compared with the
cost of solving the original linear system.

We consider two distinct approaches to computing the first-order Jacobian. First, we derive an approxi-
mate analytic Jacobian of the first-order flux integral. Second, we consider a finite difference approximation
to the first-order flux Jacobian.

4.1.1. Approximate analytic Jacobian

In this approach to Jacobian calculation, we consider a simplified (first-order) flux integral, and compute its
Jacobian. In the case of the two-dimensional Euler equations discretized over a cell-centered unstructured
mesh, each control volume has three direct neighbors, as shown in Fig. 4. The first-order flux integral or resid-
ual function of the control volume i only depends on these three neighbors and the control volume i itself:
Ri ¼
X

m¼1;2;3

ðF � n̂ dsÞm ¼ F ðUi;U N1
Þ � n̂1l1 þ F ðUi;U N2

Þ � n̂2l2 þ F ðUi;U N3
Þ � n̂3l3; ð22Þ
where n̂m and lm are the outward unit normal and the length of the face m of the control volume i respectively.
Next we take the derivative of the residual Ri with respect to the solution vector U in control volume i and its
neighbors:
oRi

oUN1

¼ oF ðU i;U N1
Þ

oUN1

n̂1l1; ð23Þ

oRi

oUN2

¼ oF ðU i;U N2
Þ

oUN2

n̂2l2; ð24Þ

oRi

oUN3

¼ oF ðU i;U N3
Þ

oUN3

bn3l3; ð25Þ

oRi

oUi
¼ oF ðU i;UN1

Þ
oU i

n̂1l1 þ
oF ðUi;U N2

Þ
oU i

n̂2l2 þ
oF ðU i;U N3

Þ
Ui

n̂3l3: ð26Þ
Since both the flux F and solution U are four-component vectors, each entry in the Jacobian matrix is a 4� 4
matrix. Although the total size of the block matrix is n� n, where n is the total number of control volumes,
there are never more than four non-zero blocks per row, and the resulting Jacobian matrix is very sparse.

The flux differencing term in Eq. (8), jeAjðUN1
� UiÞ, can be recast in the form of jeAjDU and the full deriv-

ative of this term with respect to the solution vector (in general form) is:
oðjeAjDUÞ
oUj

¼ ojeAj
oUj

DU

zfflfflfflffl}|fflfflfflffl{1

þ jeAj oðDUÞ
oU j

zfflfflfflfflfflffl}|fflfflfflfflfflffl{2

; ð27Þ
L
N
n

1R 1

i

N3

N2

l 1

Fig. 4. Schematic of direct neighbors.
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where the index j represents either control volume i or its neighbor. We neglect term 1 on the right side of Eq.
(27) to avoid the complexity of third-rank tensors. Although this introduces an error in the Jacobian, the Jaco-
bian is still accurate enough to serve as a preconditioning matrix or for the start-up linearization.This simpli-
fication of the Jacobian of Roe’s flux can be written in the following form for cells i and N 1:
oF ðUi;U N1
Þ

oUN1

¼ 1

2

oF ðUN1
Þ

oU N1

� eA��� ���� 	
; ð28Þ

oF ðUi;U N1
Þ

oU i
¼ 1

2

oF ðUiÞ
oU i

þ jeAj� 	
: ð29Þ
The other Jacobian terms in Eqs. (24)–(26) can be derived similarly.
We note that the data used to compute eA and oF

oU would ordinarily be the control volume averages Ui and
U N1

. However, we find that in practice using the reconstructed values V ðkÞR ð~xGÞ in each control volume at the
Gauss point produces a more effective preconditioning matrix. Because the reconstruction has already been
computed, the additional cost of using this more accurate data is negligible.

With this approach we include the effects of boundary conditions in the approximate Jacobian by comput-
ing the Jacobian of the boundary flux with respect to the solution in the interior of the domain. In this case,
only the oF

oUi
term in the Jacobian need be computed.

The cost of one approximate analytic Jacobian evaluation is 0.6–0.7 times the cost of a second-order resid-
ual evaluation; the cost of reconstruction is included in the residual evaluation cost, but not the Jacobian cost,
because the reconstruction is re-used.

4.1.2. Finite difference Jacobian
The second approach that we employ to find an approximate Jacobian for preconditioning is finite differ-

encing. The finite difference Jacobian, though easier to code, is more expensive than the approximate analytic
Jacobian, so we use it only when the need for a more accurate Jacobian justifies it. We compute the finite dif-
ference Jacobian by perturbing each element of the solution vector U at each Gauss point and recomputing the
flux function; the difference between the perturbed and unperturbed flux functions yields one column of each
of two blocks of the global Jacobian matrix. Boundary conditions can be treated implicitly by recomputing
boundary fluxes with perturbed solution data.

The cost of one Jacobian evaluation is 1.3–1.5 times the computation cost of the same residual evaluation if
the finite difference Jacobian is employed. Again, the reconstruction is re-used from the residual evaluation.

4.2. Start-up phase

During the start-up phase, we are far from the steady-state solution. Any linearization we make for the
non-linear problem will be inadequate to drive Newton’s method, or even to use a large time step in a
pseudo-time-stepping scheme. In general, finding a good initial guess or reasonable approximate solution
requires knowing the physics of the problem. Like preconditioning, start-up is problem dependent and is more
an art than an exact science. Various techniques such as mesh sequencing, multigrid, mixed explicit/implicit
iterations, exact solutions of a simplified problem, potential flow solutions, and so on can be helpful here.
We base our start-up process on the defect correction procedure, a la Mavriplis [18].

Because we expect the start-up process to require multiple iterations to achieve a good enough initial guess
to switch to Newton iteration, we use an implicit iterative process where the linearization is based on the inex-
pensive approximate analytic first-order Jacobian and the flux calculation remains high-order:
I
Dti
þ oR

oU

����n
1st

� �
DUnþ1 ¼ �RHighðU nÞ; ð30Þ
where Dti is a local time step based on a global CFL number times the maximum allowable explicit time step
for control volume i [3]. We use the low-order Jacobian on the left-hand side to reduce per-iteration costs, as
we are far from the exact numerical solution, and any linearization poorly predicts what that solution will be.
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Under these circumstances, the inexact linearization on the left-hand side of Eq. (30) is not a hindrance to
convergence, especially as time steps are relatively small to prevent us from going too far wrong in any one
time step.

Because we are using an approximate linearization, it does not make sense to solve the approximate linear
system exactly during these defect correction pre-iterations. Instead, we solve the linear system up to some
fraction of the non-linear residual, i.e., tolerance = C � kResðUÞk2 with C 	 0:05–0:1. The right-precondi-
tioned GMRES algorithm is used with a limited subspace size; no restart is allowed. Because we are explicitly
forming the low-order Jacobian during the start-up phase, we use matrix-explicit GMRES. The precondition-
er matrix is the same approximate analytic Jacobian as the linear system matrix and the preconditioner is
applied by using a low fill-level incomplete factorization, ILU(1), which is accurate and efficient enough for
this first-order linear system.

In general, we decrease the L2 norm of the non-linear residual by a given fraction before switching to New-
ton iterations. At that point, the linearization is deemed accurate enough to take a very large time step at each
iteration. The value used for this criterion varies from problem to problem. However, it is possible to find rea-
sonable values for different categories of compressible flows. More detail is provided in that regard in discus-
sion of results in Section 5.

4.3. Newton phase

When the Newton phase of the solution procedure begins, the major transient behaviors of the flow field
have been damped out, and the main steady features have appeared. As a result, the linearization of the non-
linear residual is accurate enough for seeking the steady-state solution. To take advantage of this state of the
solution, we use Newton iteration:
oR
oU

����n
High

DU nþ1 ¼ �RHighðU nÞ: ð31Þ
In contrast to the start-up phase, our goal in the Newton phase is to perform very few iterations with updates
that dramatically reduce the non-linear residual. As such, we require a precise linearization, and use of the
high-order Jacobian is crucial. Rather than calculate the high-order Jacobian, we use matrix-free GMRES,
eliminating the need to explicitly form this large, complex matrix. Instead, we compute the matrix vector prod-
ucts (Az) by a matrix-free approach using directional derivatives, at the cost of a high-order residual evalua-
tion per GMRES inner iteration:
oR
oU
� z 	 RðU þ ezÞ � RðUÞ

e
; e ¼ e0

kzk2

: ð32Þ
e0 is typically taken as the square root of machine accuracy to balance truncation and round-off effects. How-
ever, for fine meshes where the mesh length scale is very small, we must choose e0 larger than this so that per-
turbations in fourth-order terms are not lost in machine round-off errors. Again, a fixed number of search
directions is employed in GMRES.

The linear system is right preconditioned by the low-order Jacobian, which indeed is essential due to bad
conditioning of the high-order Jacobian. The first-order finite difference Jacobian, which is more accurate than
the approximate first-order analytical Jacobian, is used as the preconditioner matrix. ILU(p) is again used for
preconditioning, with a larger fill level (typically p ¼ 2–4). Our experience indicates that for high-order com-
putation (especially for fourth-order and transonic flows), increasing the fill level is highly beneficial; for a
detailed discussion of preconditioning issues, including cost comparisons of the various alternatives, we refer
interested readers to a companion article [22]. The linear system is solved approximately with a tighter toler-
ance (10�2 � kRðUÞk2), as a more accurate update is needed for the Newton phase. No restart is allowed.
Approximately solving the linear system can increase the number of non-linear outer iterations, but still
reduces the overall CPU time as considerable computation time is saved by not solving the linear system to
machine zero [7,28,17,21].
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5. Results

5.1. Supersonic vortex, M ¼ 2:0

To study the correctness, basic performance and solution accuracy of the proposed high-order unstructured
Newton–Krylov solver, we have investigated a smooth (isentropic) supersonic vortex in an annulus geometry,
whose exact solution is given in non-dimensional form by
q ¼ qi 1þ c� 1

2
M2

i 1� R2
i

r2

� �� � 1
c�1

;

U i ¼ Miq
c�1

2
i ;

U ¼ U iRi

r
;

u ¼ yU
r
;

v ¼ �xU
r

;

P ¼ qc

c
:

The unusual-looking form of U i is a direct consequence of how the sound speed is computed with this non-
dimensionalization. Having the exact solution provides us a direct option for accuracy measurement of the
numerical solution. We choose an inner radius Ri of 2, an outer radius Ro of 3, a Mach number at the inner
boundary M i of 2, and a density at the inner boundary of qi ¼ 1.

Five different meshes (Mesh 1: 108 CVs to Mesh 5: 27389 CVs) are employed in this test case. Fig. 5 shows
the sequence of meshes. Each mesh has almost exactly four times more control volumes than the immediate
Fig. 5. Meshes used for the supersonic vortex test case.
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coarser level and uniform refinement has been applied in the mesh generation. All meshes are irregular and
have been created independently of each other.

As an initial solution, we use the control volume averages of the exact solution, which differs from the con-
verged numerical solution because of truncation error. While such a starting solution is clearly unrealistic in
general, our goal here is to study the efficiency of our Newton–Krylov solver without confounding effects from
the start-up process. In this way, we can first test the correctness of the Newton–GMRES solver for a given
subspace size, preconditioning strategy and preconditioner matrix. Also, we can show how the efficiency of
our matrix-free approach is affected purely by discretization order when the best possible starting solution
is used. Newton iteration (infinite time step) is performed for all cases. An approximate analytic Jacobian with
ILU(4) is used for preconditioning. The convergence criterion is kResðUÞk2 ¼ 1� 10�12; K ¼ 30 is used as the
subspace size. Fig. 6 shows the convergence history for Mesh 1 and Mesh 5 in terms of CPU time. Since the
solution is started from a good initial guess, super-linear convergence is achieved from the very first iteration
both for the second and third-order discretizations. Full convergence to machine accuracy is achieved for the
fourth-order case, but the CPU time is much larger than the other two orders of accuracy. The fourth-order
discretization was of course expected to require the most CPU time, because more operations are performed,
especially in the reconstruction, which has a cost that rises quadratically with increasing discretization order.
However, a considerable part of the difference in computing cost is due to a noticeable increase in the number
of GMRES outer iterations. The linear system arising from the fourth-order discretization is ill-conditioned
and difficult to solve with the fixed subspace size which results in relatively poor solution updates for the non-
linear problem, requiring more outer iterations for convergence. On the other hand, both the second and
third-order cases quickly converge displaying the effectiveness of the preconditioning.

The accuracy of the current solver can be verified through comparison of the numerical and exact solutions
over the sequence of meshes. Fig. 7 shows the L1 and L1 norms of the error in density for this problem. The L1

norm clearly reaches the nominal order of accuracy in all cases, while the L1 norm shows roughly a one order
deterioration of convergence for all orders of accuracy. This is almost certainly due to an interaction between
boundary conditions, which may be imposed in a way that is subtly incompatible in the corners of the domain.

Here, some accuracy–efficiency analysis can be carried out. The solution CPU time versus the error norm is
plotted in Fig. 8. For a fixed CPU time, for example (CPU time = 10 s), the third-order performance charac-
teristic line generates the minimum error. For a fixed error level, L1 ¼ 1� 10�5, the fourth-order scheme has
the minimum computation time, although on that error level the third and fourth-order lines are very close to
each other. In all cases the second-order scheme is out-performed by its high-order counterparts. Though not
shown here, a similar performance characteristic graph with the same trend, but different CPU time, can be
achieved when the solution starts from a constant Mach number as an initial guess with a start-up process.
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Fig. 6. Convergence history for supersonic vortex.
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5.2. Subsonic airfoil, NACA 0012, M ¼ 0:63, a ¼ 2:0


Here we present a subsonic case that illustrates most of the features of the solver’s performance. The con-
vergence characteristics are investigated for a series of meshes. Five different meshes from coarse to relatively
fine have been used; the meshes are shown in Fig. 9. All meshes have proper refinement at the leading and
trailing edges. The far field is located at 25 chords and characteristic boundary conditions are implemented
implicitly.

The tolerance in solving the linear system for the start-up phase is 5� 10�2 and for the Newton part is
1� 10�2. For all test cases a subspace of 30 has been set and no restart is allowed. The preconditioning for
the start-up pre-iterations is performed by employing the approximate analytical Jacobian matrix with
ILU(1) factorization and for the Newton iteration the first-order finite difference Jacobian matrix with
ILU(4) factorization is used. The Newton iteration is matrix-free and e ¼ e0

kzk with e0 ¼ 10�6 is used for direc-
tional differencing. The initial condition is the free stream flow.

Experiments for subsonic flow have shown that a reasonable starting point for Newton iteration can be
easily achieved by a relatively small number of pre-iterations, and there is no need to decrease the residual



Fig. 9. Meshes used for the NACA 0012 airfoil cases.
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by a significant factor. Only a rough physical solution over the airfoil is good enough for starting Newton
iterations. The approach described below works well, but could almost certainly be optimized to be simpler
and more efficient.

The solution starts with 30 pre-iterations in the start-up process to reach a good initial solution before
switching to Newton iterations. As shown in Table 1, the CFL number starts at 2.0 and is increased gradually



Table 1
Variation of CFL number with iteration for subsonic airfoil case

Iteration 1–5 6–10 11–30 Newton

CFL 2 20 100 109
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to CFL = 100 for the first 15 pre-iterations which are performed with first-order accurate flux evaluation. The
remaining 15 pre-iterations are performed in the form of the defect correction with constant CFL of 100,
where the first-order Jacobian is used both for constructing the left hand side and for preconditioning the lin-
ear system. The right hand side of Eq. (30) is evaluated to second-order accuracy. The cost of each pre-iter-
ation includes one first order Jacobian evaluation and its incomplete factorization, one flux evaluation, and
one linear system solve using GMRES, which is not matrix-free since the Jacobian matrix is available
explicitly.

To justify our decision to use second-order accurate flux evaluation for defect correction, let us examine the
effect on the solution at the end of the start-up procedure of using high-order accurate flux evaluations during
defect correction. Fig. 10 displays the pressure coefficient over the upper surface of the airfoil at the end of the
start-up process for Mesh 5, which is the finest mesh. While the general trend of the pressure coefficient over
the airfoil is recovered, the suction peak has not been properly resolved yet. Because of the mesh volume, the
diversity of mesh length scales, and the local time stepping approach, solution time evolution is far from com-
plete, especially in the small cells near the leading edge; therefore, the suction peak is still growing. The key
point to note here is the violent oscillations of the fourth-order discretization around the suction region in
the course of the solution evolution. Such oscillations around extrema are not unusual during the transient
part of the solution, especially in places where the size of boundary cells changes abruptly. The second and
third-order discretizations show mild oscillations, but for the fourth-order scheme, with its low dissipation,
the oscillations are quite vigorous. These oscillations can be a source of instability in the start-up process
and indeed the fourth-order case is sensitive in the early period of solution process. Since the cost of the
high-order start-up is more than the second-order one, and it could generate a noisy solution state (before
switching to Newton iteration), we choose for the sake of robustness to use the second-order residual evalu-
ation throughout the defect correction part of the solution process for all cases shown hereafter.

After start-up, the solution process is switched to Newton iteration and an infinite CFL is employed. To
compare the computing cost for different meshes, a work unit has been used, which is equal to the cost of
one residual evaluation for the corresponding order of accuracy; different meshes and different orders of accu-
racy therefore obviously require different amounts of CPU time per work unit. Convergence is reached when
the L2 norm of the non-linear density residual falls below 1� 10�12.
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Fig. 10. Pressure coefficient over the upper surface after start-up, Mesh 5 (19957 CVs).



Table 2
Convergence summary for NACA 0012 airfoil, M ¼ 0:63; a ¼ 2


Order Resid. Eval. Time (sec) Work units Newton iterations Newton phase

Work Units % of Total

Mesh 1

2nd 100 5.76 240.0 3 96.7 40.3
3rd 132 8.87 197.1 4 122.4 62.1
4th 244 27.09 258.0 7 226.8 87.9

Mesh 2

2nd 121 12.88 280.0 3 118.3 42.3
3rd 136 17.71 213.4 4 128.2 60.0
4th 283 58.15 312.6 8 274.8 87.9

Mesh 3

2nd 126 26.88 349.1 3 136.1 39.0
3rd 147 36.03 248.5 4 141.2 56.8
4th 247 90.54 289.3 7 239.2 82.7

Mesh 4

2nd 158 60.39 399.9 4 182.8 45.7
3rd 158 73.98 276.0 4 159.0 57.6
4th 318 217.60 371.4 9 317.8 85.6

Mesh 5

2nd 254 164.10 562.0 7 325.3 57.9
3rd 286 225.87 456.3 8 321.8 70.5
4th 542 682.0 639.8 16 577.1 90.2
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Table 2 summarizes the convergence behavior for the second-, third-, and fourth-order discretizations. For
all meshes, after 30 pre-iterations, only a few Newton iterations are required to reach full convergence. The
total number of work units required for convergence for moderate-sized meshes (meshes 3 and 4) range from
250 to 400, which is comparable to other results in the literature for second-order schemes. Also, the number
of work units required varies little with order of accuracy, with third-order being (relatively) the fastest, and
fourth-order the slowest of the three. The total number of work units does increase somewhat as finer meshes
are used. The linear system arising from a denser mesh is more difficult to solve than a similar system arising
from a coarser mesh, so using a constant subspace size without restart becomes less effective in solving the
linear system as the size and complexity of the system increases. Consequently more outer Newton iterations
are needed for convergence. Also, the solution state after the start-up for the fine mesh is not as close to the
steady-state solution as for the coarse mesh; this also contributes to slowing the Newton convergence on
the fine mesh. Notice that the total number of work units has increased only by about a factor of 2.5 while
the mesh size has increased by a factor of 16, so while not fully mesh-size independent, the CPU time required
for convergence is growing only slightly faster than the mesh size.

The convergence history for the coarse mesh (Mesh 1) and the fine mesh (Mesh 5) are shown in Fig. 11.
Although the start up process is the same for all orders of discretizations, the starting residual is different
because the residual (r0) which initializes the implicit start-up is based on the correct corresponding order
of residual evaluation. However, at the end of the start-up process, the solution state is almost the same
for all discretization orders. After start-up, full convergence is achieved within a few Newton iterations in sec-
ond and third order cases. For the fourth-order case convergence is about two times slower (in terms of outer
iterations). The rapid Newton convergence for the second and third-order cases is evident.

Fig. 12a examines the correlation between the non-linear residual after a Newton iteration and the final
residual of the linear system from that iteration. The correlation between these two is nearly linear, indicating
that the linear system is solved progressively more accurately as the non-linear problem converges. Fig. 12b
shows the quality of the linear system solution for each Newton iteration. The linear residual reduction
within the GMRES linear solver is plotted versus the final residual of that system for all outer iterations.
In other words this shows how much the linear system residual is reduced through inner iterations. For the
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second-order case the linear system is solved quite effectively and more than 8 orders of residual reduction are
achieved given the subspace size of 30 with no restart. For the third-order and fourth-order discretization this
residual reduction is about 5 and 2 orders respectively for the same subspace size. This reduction in quality in
solving the linear system eventually increases the number of Newton iterations for high-order discretizations.
However, we have shown elsewhere that by using multiple restarts and solving the linear system up to machine
accuracy for each Newton iteration semi quadratic convergence is attainable even for the fourth-order discret-
ization with a dramatic penalty in computation cost [22].

Lift and drag coefficients for all meshes and discretization orders are tabulated in Table 3. In the finest mesh
case, lift coefficients up to third decimal place and the drag coefficients up to the fourth decimal place have
converged to the same value. However, the drag coefficient still is far from zero. This is mainly due to lack
of pressure recovery at the trailing edge singular point. The third-order drag coefficient is consistently larger
than the second-order drag coefficient, which is surprising. However, the fourth-order drag is consistently the
smallest, as was expected.



Table 4
Effect of the far field distance on lift and drag coefficients, NACA 0012, M ¼ 0:63; a ¼ 2


Mesh information Order Lift coefficient Drag coefficient

Mesh 4-1 2nd 0.332506 0.00010622
10,604 CVs 3rd 0.332882 0.00012667
128 Chords 4th 0.332699 7.09651e-5

DeZeeuw and Powell [9] 2nd 0.3289 0.0004
10,694 CVs (Cartesian)
128 chords

Mesh 5-1 2nd 0.333575 4.88588e-5
22,421 CV 3rd 0.333530 5.98949e-5
200 Chords 4th 0.334306 4.04234e-5

Mesh 5-2 2nd 0.332908 1.82357e-5
24,514 CV 3rd 0.333715 2.35558e-5
1600 Chords 4th 0.333374 5.66076e-6

Table 3
Lift and drag coefficients for all meshes and discretization orders, NACA 0012, M ¼ 0:63; a ¼ 2
, far field size of 25 chords

Test case Lift coefficient Drag coefficient

Mesh1

2nd 0.322318 0.00097664
3rd 0.317393 0.00184889
4th 0.322223 0.00072576

Mesh2

2nd 0.322302 0.00057225
3rd 0.321846 0.00103438
4th 0.322448 0.00040369

Mesh3

2nd 0.324905 0.00040197
3rd 0.325214 0.00049820
4th 0.325588 0.00034757

Mesh4

2nd 0.325159 0.000336973
3rd 0.324740 0.00037595
4th 0.325323 0.00032525

Mesh5

2nd 0.324801 0.00032136
3rd 0.324568 0.00032711
4th 0.324474 0.00030828
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All of the test cases so far are performed with a far field size of 25 chords. To study the effect of the far field
size on lift and drag, and to show that computing smaller drag is possible with the same mesh resolution, the
far field size is increased considerably while the mesh resolution, the number of points on the airfoil and refin-
ing factors remain the same. With this approach, the new meshes are equivalent to the meshes of the previous
test cases up to 25 chords. The results are tabulated in Table 4. In all cases the drag coefficient has been
reduced dramatically by increasing the far field distance. For instance, the fourth-order computed drag over
Mesh 5-2 has been reduced by more than 50 times compared to the fourth-order computed drag over Mesh 5.
The lift coefficient is also affected by the far field distance: in the most cases the lift coefficient was slightly
increased by extending the far field size.2 Included in the table is a comparison result from DeZeeuw and
2 It should be mentioned that in this research no far field correction is used, and high-order far field correction was beyond of the scope
of this research.
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Powell [9]; their mesh is roughly comparable to our Mesh 4-1, and their scheme is second-order accurate. Lift
coefficients vary by only about 1% between our Mesh 4-1 results and the DeZeeuw and Powell result, and our
drag coefficients on that mesh are three to six times smaller.

While general conclusions about drag accuracy would be premature without more careful study, we can say
with confidence that both far field boundary conditions and the behavior of the discretization at the trailing
edge of the airfoil are crucial factors. Also, based on the comparison of second- and third-order results, we
speculate that discretization methods with even orders of accuracy may benefit from a cancellation effect of
some sort.

The Mach profiles (computed at Gauss points) along the chord of the airfoil for Mesh 1 (the coarsest mesh)
are shown in Fig. 13. We see the effect of a sudden change in the area of boundary cells in the acceleration
region. In this converged solution, the effect on the Mach profile is most pronounced for the second-order
scheme. However, the high-order solution has reduced the amplitude of this jump so that in the fourth-order
case, the jump has disappeared. Also, the Mach profile over the lower surface of the airfoil shows the second-
order Mach profile is slightly lower than its high-order counterparts. We conclude that the flow acceleration
Fig. 13. Mach distribution on the airfoil surface, NACA 0012 airfoil, Mesh 1, M ¼ 0:63; a ¼ 2
.
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around the leading edge of the airfoil is better recovered for high-order discretizations when the mesh resolu-
tion is coarse.

5.3. Transonic airfoil, NACA 0012, M ¼ 0:8; a ¼ 1:25


For a transonic flow, in general, it is more difficult to get fast convergence. This is because of the mixed
subsonic/supersonic nature of the flow and the existence of discontinuities (shocks) in the solution. The meth-
odology for handling discontinuities can increase the complexity of the problem. This is especially true for
implicit schemes, where the solution – and perhaps more sensitively the limiter values – can change dramat-
ically between iterations. In the case of the matrix-free approach in which matrix-vector multiplication is com-
puted through flux perturbation, any oscillatory behavior in the limiter could severely degrade the accuracy of
the Frechet derivatives and therefore the solution convergence. All these factors increase the complexity and
difficulty in solving transonic flows.

The transonic flow around the NACA 0012 at M ¼ 0:8; a ¼ 1:25
 is studied. Mesh 3 with 4958 CVs is
employed for this test case.3 Flow is solved for all orders of accuracy using Venkatakrishnan’s limiter with
proper high-order modification. For the second and third-order cases K ¼ 10 is used in the limiter, and for
the fourth-order discretization K ¼ 1 is employed. The limiter values are allowed to change through all iter-
ations and no freezing is considered. The tolerance of solving the linear system, like previous test cases, for the
start-up phase is 5� 10�2 and for the Newton phase is 1� 10�2. For all test cases a subspace of 30 has been set
and no restart is allowed. The preconditioning for the start-up pre-iterations is performed using the approx-
imate analytical Jacobian matrix with ILU(1) factorization and for the Newton iteration the finite difference
Jacobian matrix with ILU(4) factorization is applied. The Newton iteration is matrix-free and e ¼ e0

kzk with
e0 ¼ 10�7 is used for directional differencing. The initial condition is free stream flow. Convergence is reached
when the L2 norm of the non-linear density residual falls below 10�12.

For transonic flow, the shock locations in the flow field and their strengths need to be captured relatively
accurately before switching to Newton iteration; otherwise Newton iterations will not decrease the residual of
the non-linear problem effectively. This normally is achieved by reducing the non-linear residual by some 1.5–2
orders of magnitude with respect to the initial residual in the course of the start-up process.

Multiple implicit pre-iterations are performed in the form of defect correction, before switching to Newton
iteration. For the second and third-order start-up phases, pre-iterations in the form of defect correction con-
tinue until the residual of the non-linear problem drops 1.5 order below the residual of the initial condition. As
shown in Table 5, in the defect correction phase the starting CFL number is 2 and it is increased gradually to
200 after 50 iterations. The CFL is not increased further because increasing CFL does not help convergence
when the linearization is inaccurate, as in the start-up phase. The second and third-order discretizations
require, respectively, 69 and 81 pre-iterations in the start-up phase. In the Newton phase, the second- and
third-order cases use a very large, but not infinite time step. The start-up phase for the fourth-order discret-
ization includes 200 pre-iterations with a similar CFL trend. Although the target residual reduction of 1.5
orders was not achieved through pre-iterations, the solution after 200 iterations was good enough for starting
the Newton phase. For the fourth-order transonic case, using too large a time step in the Newton phase does
not accelerate convergence because of inaccurate linearization and limiter oscillation; therefore, CFL = 10,000
has been set for the Newton phase for fourth order.

Fig. 14 displays the Mach profile at the end of the start-up phase for all orders of accuracy. There are some
oscillations, especially near the strong upper surface shock; however, the shock locations and their strengths
are captured reasonably accurately before switching to Newton iteration.

The convergence summary is shown in Table 6. Similar to the subsonic case, the number of Newton iter-
ations for the fourth-order discretizations is twice as large as for the second and third-order discretizations.
The major cost of the solution in all cases is the start-up cost. Therefore there is a reasonable potential to
reduce the total solution work dramatically by employing an optimized start-up technique which is able to
3 We show results for only a single mesh here because mesh refinement illustrates only the well-known fact that the shock location is
more sharply defined on finer meshes.
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Table 5
Variation of CFL number with iteration for the transonic airfoil case

CFL at iteration. . . Total number of pre-iterations

1–10 11–30 31–50 51+ Newton

2nd 2 20 100 500 106 69
3rd 2 20 100 200 106 81
4th 2 20 100 200 5@5� 103, then 104 200

Table 6
Convergence summary for NACA 0012 airfoil, M ¼ 0:8; a ¼ 1:25


Order Residual evaluations Time (s) Work Units Newton iterations Work units, Newton phase

2nd 197 65.6 279 4 91
3rd 241 106.7 281 5 119
4th 450 311.4 590 10 221
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capture shocks and establish the major flow features efficiently. Fig. 15 shows the convergence history graph.
This time, reduction in convergence rate for the fourth-order case is not only due to poor convergence of the
solution of the linear system in each Newton iteration, but also to the limiter firing which changes the linear-
ization in each iteration.

Manzano et al. [17] presented a very fast Newton-GMRES algorithm based on a second-order artificial dis-
sipation discretization. For the same case on a similar unstructured mesh, their total computation cost in
terms of work units is just under 400. Our second-order scheme is about 30% faster than this; even allowing
for differences in speed caused by differences in implementation, the current solver is very competitive.

Table 7 summarizes the lift and drag coefficients for all discretization orders, which are in good agreement
with the AGARD reference data [1]. Both CL and CD in transonic flow are effectively determined by location
and strength of the shocks; our good agreement with this reference solution confirms that our scheme captures
shocks accurately.

The Mach profile along the surface is shown in Fig. 16. Both the location and strength of the shocks are in
good agreement with the AGARD data [1]. The second-order discretization has an overshoot right before the
upper shock. The third-order discretization produces less noise in this shock capturing case. The fourth-order
discretization shows some oscillations inside the shock region; this behavior is clearly related to the high-order
discretization, although not directly to a Gibbs-like phenomenon in the reconstruction within control volumes
in the shock, because the oscillations span multiple control volumes.
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Table 7
Lift and drag coefficients, NACA 0012, M ¼ 0:8; a ¼ 1:25


Test case CL CD

2nd 0.3375 0.02205
3rd 0.3393 0.02226
4th 0.3451 0.02247
AGARD-211 structured (192 � 39) 0.3474 0.0221
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6. Concluding remarks

While, in general, computing cost remains one of the main concerns for the high-order computation of fluid
flow problems, this article demonstrates that fast convergence – and a reasonable computing cost – for high-
order unstructured solutions is indeed possible. Results for the implicit flow solution algorithm described in
this research show that the second- and third-order schemes both display semi-quadratic or super-linear con-
vergence for all test cases if started from a good initial guess or approximate solution. The fourth-order
scheme still converges quickly although it is slower than the other discretization orders, requiring nearly



A. Nejat, C. Ollivier-Gooch / Journal of Computational Physics 227 (2008) 2582–2609 2607
two times the number of outer iterations as the second-order scheme started from a similar approximate flow
solution. Our work shows that an efficient start-up technique, a good preconditioner matrix, and an effective
preconditioning strategy are key issues for robustness and fast convergence of a Newton–GMRES solver, not
only for second-order discretizations but for high order as well. The current second-order solver algorithm,
even without multigrid augmentation, is among the world’s fastest solver algorithms for unstructured meshes.
The third and fourth-order schemes are comparable in efficiency to the second-order scheme as measured by
residual evaluations.

The start-up procedure we describe is very effective in providing a good approximate solution as an initial
condition for the Newton phase with a reasonable cost. We use a defect correction procedure, with a high-
order residual evaluation and a first-order approximate analytic Jacobian; we form the Jacobian explicitly,
and use it both in matrix-vector multiplies in GMRES and as a preconditioner matrix. For subsonic cases,
a small fixed number of pre-iterations with a second-order residual is sufficient to reach a good initial solution
for all orders. For the transonic case, we use the full-order residual evaluation and the number of pre-itera-
tions increases, since some residual reduction target must be met before switching to Newton iterations; for
the fourth-order scheme, an upper limit on the number of pre-iterations was reached, but with no ill effects
on the robustness of the Newton solver.

Preconditioning and the accuracy of the linear system solution are vital factors in the Newton phase of the
Newton–GMRES solver. We have shown that the use of a first-order finite difference Jacobian for precondi-
tioning is sufficient, provided that the fill level in the ILU factorization is high enough to take advantage of all
the information in the preconditioner matrix. We have found that ILU(4) factorization provides excellent per-
formance for the second- and third-order schemes, and very good performance for the fourth-order scheme.
For the fourth-order scheme, convergence of the GMRES inner iterations is slow, because the preconditioned
matrix is still too ill-conditioned.

The performance of the current flow solver in terms of CPU time scales only slightly faster than linearly
with the mesh size for all orders of discretization. As an overall performance assessment (including the
start-up phase), the third-order solution is about 1.3–1.5 times, and the fourth-order solution is about 3.5–
5 times, more expensive than the second-order solution with the current solver technology. With increasing
mesh size, eventually the fixed subspace size in GMRES is insufficient to solve the linear system to our pre-
specified tolerance at each iteration. A multilevel approach is likely to alleviate this problem, whether applied
as an algebraic multigrid preconditioner within GMRES or as a non-linear full-approximation multigrid
scheme with GMRES acting as a smoother. A similar approach should also prove useful during start-up.

Extension of the current high-order 2D solver algorithm to a 3D version, considering the availability of the
3D reconstruction procedure, is reasonably straightforward given high-order boundary data and control vol-
ume moments for a 3D mesh. Since the 2D algorithm is developed for unstructured meshes, there is no lim-
itation in such an extension, and the performance of the flow solver in terms of the convergence could even be
improved by introducing the third dimension (3D relieving effect). Extension of the current solution procedure
to viscous flow computation will require, at a minimum, viscous residual function evaluation and a proper
anisotropic unstructured/hybrid mesh. In addition, there are likely to be convergence issues related to both
geometrical and physical stiffness, and to interaction between the mean flow and a turbulence model. These
issues will require careful attention to proper preconditioning.

Acknowledgment

This work was supported by the Canadian Natural Sciences and Engineering Research Council under
Grant OPG-0194467.

We thank the reviewers of this paper for many helpful comments which improved the presentation
significantly.

References

[1] AGARD Fluid Dynamics Panel. Test Cases for Inviscid Flow Field Methods. AGARD Advisory Report AR-211, AGARD, May
1985.



2608 A. Nejat, C. Ollivier-Gooch / Journal of Computational Physics 227 (2008) 2582–2609
[2] H.E. Bailey, R.M. Beam, Newton’s method applied to finite difference approximations for steady state compressible Navier–Stokes
equations, Journal of Computational Physics 93 (1991) 108–127.

[3] Timothy J. Barth, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations, in:
Unstructured Grid Methods for Advection-Dominated Flows, pp. 6-1–6-61. AGARD, Neuilly sur Seine, France, 1992. AGARD-R-
787.

[4] Timothy J. Barth, Recent developments in high order k-exact reconstruction on unstructured meshes, AIAA paper 93-0668, January
1993.

[5] Timothy J. Barth, Paul O. Frederickson, Higher order solution of the Euler equations on unstructured grids using quadratic
reconstruction, AIAA paper 90-0013, January 1990.

[6] Timothy J. Barth, Samuel W. Linton, An unstructured mesh Newton solver for compressible fluid flow and its parallel
implementation, AIAA paper 95-0221, January 1995.

[7] Max Blanco, David W. Zingg, Fast Newton–Krylov method for unstructured grids, American Institute of Aeronautics and
Astronautics Journal 36 (4) (1998) 607–612.

[8] S. De Rango, D.W. Zingg, Higher-order spatial discretization for turbulent aerodynamic computations, American Institute of
Aeronautics and Astronautics Journal 39 (7) (2001) 1296–1304.

[9] Darren De Zeeuw, Kenneth G. Powell, An adaptively refined Cartesian mesh solver for the Euler equations, Journal of
Computational Physics 104 (1) (1992) 56–68.

[10] M. Delanaye, J.A. Essers, Quadratic-reconstruction finite volume scheme for compressible flows on unstructured adaptive grids,
American Institute of Aeronautics and Astronautics Journal 35 (4) (1997) 631–639.

[11] Michel Delanaye, Polynomial Reconstruction Finite Volume Schemes for the Compressible Euler and Navier–Stokes Equations on
Unstructured Adaptative Grids. PhD thesis, Universite de Liege, Faculte des Sciences Appliquees, 1998.

[12] Michel Delanaye, Phillippe Geuzaine, J.A. Essers, Compressible flows on unstructured adaptive grids, in: Proceedings of the
Thirteenth AIAA Computational Fluid Dynamics Conference, 1997.

[13] P. Geuzaine, M. Delanaye, J.-A. Essers, Computation of high Reynolds number flows with an implicit quadratic reconstruction
scheme on unstructured grids, in: Proceedings of the Thirteenth AIAA Computational Fluid Dynamics Conference, American
Institute of Aeronautics and Astronautics, 1997, pp. 610–619.

[14] Andrew G. Godfrey, Curtis R. Mitchell, Robert W. Walters, Practical aspects of spatially high-order accurate methods, American
Institute of Aeronautics and Astronautics Journal 31 (9) (1993) 1634–1642.

[15] Ami Harten, High-resolution schemes for hyperbolic conservation-laws, Journal of Computational Physics 49 (3) (1983) 357–393.
[16] H. Luo, J. Baum, R. Lohner, A fast matrix-free implicit method for compressible flows on unstructured grids, Journal of

Computational Physics 146 (1998) 664–690.
[17] L.M. Manzano, J.V. Lassaline, P. Wong, D.W. Zingg, A Newton–Krylov Algorithm for the Euler Equations Using Unstructured

Grids, AIAA Paper 2003-0274, in: 41th AIAA Aerospace Sciences Meeting and Exhibit, 2003.
[18] Dimitri J. Mavriplis, On convergence acceleration techniques for unstructured meshes, Technical Report ICASE No. 98-44, Institute

for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, NASA Langley Research Center,
Hampton VA 23681-2199, 1998.

[19] Krzysztof Michalak Carl, Ollivier-Gooch, Matrix-explicit GMRES for a higher-order accurate inviscid compressible flow solver, in:
Proceedings of the Eighteenth AIAA Computational Fluid Dynamics Conference, 2007.

[20] Amir Nejat, Carl Ollivier-Gooch, A high-order accurate unstructured GMRES algorithm for inviscid compressible flows, in:
Proceedings of the Seventeenth AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and
Astronautics, June 2005.

[21] Amir Nejat, Carl Ollivier-Gooch, A high-order accurate unstructured Newton–Krylov solver for inviscid compressible flows, in: 36th
AIAA Fluid Dynamics Conference, 2006. AIAA 2006-3711.

[22] Amir Nejat, Carl Ollivier-Gooch, Effect of discretization order on preconditioning and convergence of a high-order unstructured
Newton–GMRES solver for the Euler equations, Journal of Computational Physics, in press, doi:10.1016/j.jcp.2007.10.024.

[23] J. Nichols, D.W. Zingg, A three-dimensional multi-block Newton–Krylov flow solver for the Euler equations, in: Proceedings of the
Seventeenth AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, 2005.

[24] Carl F. Ollivier-Gooch, High-order ENO schemes for unstructured meshes based on least-squares reconstruction, AIAA Paper
97-0540, January 1997.

[25] Carl F. Ollivier-Gooch, Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruc-
tion, Journal of Computational Physics 133 (1) (1997) 6–17.

[26] Carl F. Ollivier-Gooch, Michael Van Altena, A high-order accurate unstructured mesh finite-volume scheme for the advection–
diffusion equation, Journal of Computational Physics 181 (2) (2002) 729–752.

[27] P.D. Orkwis, Comparison of Newton’s and Quasi-Newton’s method solvers for the Navier–Stokes equations, American Institute of
Aeronautics and Astronautics Journal 31 (1993) 832–836.

[28] A. Pueyo, D.W. Zingg, Efficient Newton–Krylov solver for aerodynamic computations, American Institute of Aeronautics and
Astronautics Journal 36 (11) (1998) 1991–1997.

[29] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics 43 (1981)
357–372.

[30] S.E. Rogers, D. Kwak, C. Kiris, Steady and unsteady solutions of the incompressible Navier–Stokes equations, American Institute of
Aeronautics and Astronautics Journal 29 (4) (1991) 603–610.

http://dx.doi.org/10.1016/j.jcp.2007.10.024


A. Nejat, C. Ollivier-Gooch / Journal of Computational Physics 227 (2008) 2582–2609 2609
[31] Youcef Saad, Martin H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM
Journal of Scientific and Statistical Computing 7 (3) (1986) 856–869.

[32] V. Venkatakrishnan, Newton solution of inviscid and viscous problems, American Institute of Aeronautics and Astronautics Journal
27 (7) (1989) 885–891.

[33] V. Venkatakrishnan, Convergence to steady-state solutions of the Euler equations on unstructured grids with limiters, Journal of
Computational Physics 118 (1995) 120–130.

[34] V. Venkatakrishnan, T.J. Barth, Application of direct solvers to unstructured meshes for the Euler and Navier–Stokes equations using
upwind schemes, in: Twenty-seventh Aerospace Sciences Meeting, 1989. AIAA Paper 89-0364.

[35] V. Venkatakrishnan, D. Mavriplis, Implicit solvers for unstructured meshes, Journal of Computational Physics 105 (1993) 83–91.
[36] D. Zingg, S. De Rango, M. Nemec, T. Pulliam, Comparison of several spatial discretizations for the Navier–Stokes equations,

Journal of Computational Physics 160 (2000) 683–704.


	A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows
	Introduction
	High-order discretization methods
	Implicit methods for steady-state convergence
	Scope of the present article

	Finite-volume discretization of the governing equations
	Spatial discretization
	High-order reconstruction procedure
	Numerical flux computation
	Flux integration
	High-order boundary condition enforcement
	Enforcing monotonicity

	Convergence to steady state
	Computing the preconditioning matrix
	Approximate analytic Jacobian
	Finite difference Jacobian

	Start-up phase
	Newton phase

	Results
	Supersonic vortex, M=2.0
	Subsonic airfoil, NACA 0012, M=0.63,  \alpha =2.0 ^{\circ} 
	Transonic airfoil, NACA 0012, M=0.8, \alpha =1.25 ^{\circ} 

	Concluding remarks
	Acknowledgment
	References


